

Prox Reader GP20

The GP20 is a very high performance proximity reader featuring medium range and small dimensions. The unit will run from any voltage from 5 to 13.5 V(dc). The GP20 also features good read range at 5 Volts, making it ideally suited to a wide variety of applications, particularly access control.

5-13.5 Volts regulated DC at 65 mA typical with a 12V supply.
A linear regulator is recommended.
Wiegand, Magstripe, 9.6K Baud Serial ASCII (RS232) or special to customer specifications.
Range 22 cm at 13.5V and 13 cm at 5V with ISO card
125KHz standard or 134.2KHz to special order.
Read Only.
Internal LED and Buzzer
7.8 x 4.3 x 1.5 cm
-10 to 60 Deg C.
90cm.

Output Assignment

Red	Power 5 - 13.5 Volts
Black	Power 0 Volt
White	Magstripe clock & Wiegand1, with internal 4K7 pull up
Green	RS232 data, Magstripe data & Wiegand0, with internal 4K7
	pull up (pull up only for Wiegand and Magstripe)
Orange	Card Present Output with internal 4K7 pull up
Yellow	Program Input
Blue	No Connection
Brown	No Connection

Output Format

The output format can be customer programmed. The available formats are Wiegand, Magnetic Emulation and Serial ASCII (RS232)

Wiegan	d	Magst	ripe
Red	Power +V	Red	Power +V
Black	Ground Ov	Black	Ground Ov
White	Data1	Green	Data
Green	Data0	White	Clock(Strobe)
Yellow	Connect to White	Orange	Card Present
Orange	No Connection	Yellow	Connect to Orange

Serial ASCII (RS232)

Red	Power +V
Black	Ground 0v
Green	TX Data
Yellow	No Connection
White	No Connection
Orange	No Connection

Data Structure (Serial ASCII)

Baud Rate: 9600, N, 8,1

STX(02 HEX) DATA(10 HEX CHARACTERS) CR LF ETX(03 HEX)

The start character is factory defined as an 'STX' (02 HEX). This is followed by 10 Hex characters of data. The CR\LF characters serve to bring the received screen text back to the left hand side and on the line below after the data bytes have been sent. The 'ETX ' (03 HEX) character denotes the end of the current transmission.

Data Structure (Magstripe Emulation, ABA Track 2)

Speed : Simulated to 56 IPS (Inch per Second)

10 LEADING ZEROS	SS	DATA	(14 DIGITS)	ES	LRC	10 TRAILING ZEROS

The 10 leading zeros prepare the receiving unit to accept the data. The data is 14 digits long. SS is the Start Sentinel consisting of 11010. ES is the End Sentinel consisting of 11111. LRC is the Longitudinal Redundancy Check character. Lastly there are 10 trailing zeros. Magstripe 8 digits and 6 digits are available for special request.

The hexadecimal data from the card is first converted to a denary string before transmission. For example, a card containing the hexadecimal data (0411115EA6), will be www.atcaidc.com danamy and sant as danamy 00017466220108 (14 digits)

Page 2/3

The calculation is performed as follows.

 $(6*16^{0} + 10*16^{1} + 14*16^{2} + 5*16^{3} + 1*16^{4} + 1*16^{5} + 1*16^{6} + 1*16^{7} + 4*16^{8}) =$ 00017466220198

Data Structure (Wiegand Format-26 Bit)

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Р	S	S	S	S	S	S	S	S	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Р
Р	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е													
													0	0	0	0	0	0	0	0	0	0	0	0	Р
SUMMED FOR EVEN PARITY (E)										SU	JMN	1ED	FOF	R OD	DD P	ARľ	ГΥ (0)							

Note:

Parity (Even or Odd) Start Bit and Stop Bit
Site Bits from Card or Reader
Card Data
Site bits from Card (24 bits Card Data)
Normal 01
Normal 24

Wiegand Data Timing Specification

Pulse Interval	(TPW) = 2.0mS +/- 3%
Pulse Width	(TDW) = 100uS + - 3%

PROGRAMMING THE OUTPUT FORMAT

The programming input may be connected in the following ways to choose between the available output formats.

1) Serial ASCII	Leave Program Input Open Circuit
2) Wiegand	Connect Program Input to Clock Output
3) Clock Data**	Connect Program Input to Data Output
4) Magnetic Emulation	Connect Program Input to Card Present

**(To special order only – Minimum order 1K)